3.913 \(\int \frac{x^{19}}{(a+b x^8)^2 \sqrt{c+d x^8}} \, dx\)

Optimal. Leaf size=141 \[ -\frac{\sqrt{a} (3 b c-2 a d) \tan ^{-1}\left (\frac{x^4 \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^8}}\right )}{8 b^2 (b c-a d)^{3/2}}+\frac{a x^4 \sqrt{c+d x^8}}{8 b \left (a+b x^8\right ) (b c-a d)}+\frac{\tanh ^{-1}\left (\frac{\sqrt{d} x^4}{\sqrt{c+d x^8}}\right )}{4 b^2 \sqrt{d}} \]

[Out]

(a*x^4*Sqrt[c + d*x^8])/(8*b*(b*c - a*d)*(a + b*x^8)) - (Sqrt[a]*(3*b*c - 2*a*d)*ArcTan[(Sqrt[b*c - a*d]*x^4)/
(Sqrt[a]*Sqrt[c + d*x^8])])/(8*b^2*(b*c - a*d)^(3/2)) + ArcTanh[(Sqrt[d]*x^4)/Sqrt[c + d*x^8]]/(4*b^2*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.159961, antiderivative size = 141, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.292, Rules used = {465, 470, 523, 217, 206, 377, 205} \[ -\frac{\sqrt{a} (3 b c-2 a d) \tan ^{-1}\left (\frac{x^4 \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^8}}\right )}{8 b^2 (b c-a d)^{3/2}}+\frac{a x^4 \sqrt{c+d x^8}}{8 b \left (a+b x^8\right ) (b c-a d)}+\frac{\tanh ^{-1}\left (\frac{\sqrt{d} x^4}{\sqrt{c+d x^8}}\right )}{4 b^2 \sqrt{d}} \]

Antiderivative was successfully verified.

[In]

Int[x^19/((a + b*x^8)^2*Sqrt[c + d*x^8]),x]

[Out]

(a*x^4*Sqrt[c + d*x^8])/(8*b*(b*c - a*d)*(a + b*x^8)) - (Sqrt[a]*(3*b*c - 2*a*d)*ArcTan[(Sqrt[b*c - a*d]*x^4)/
(Sqrt[a]*Sqrt[c + d*x^8])])/(8*b^2*(b*c - a*d)^(3/2)) + ArcTanh[(Sqrt[d]*x^4)/Sqrt[c + d*x^8]]/(4*b^2*Sqrt[d])

Rule 465

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = GCD[m + 1,
n]}, Dist[1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))^q, x], x, x^k], x] /; k != 1] /;
FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(a*e^(2
*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c - a*d)*(p + 1)), x] + Dist[e^(2
*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) +
(a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{19}}{\left (a+b x^8\right )^2 \sqrt{c+d x^8}} \, dx &=\frac{1}{4} \operatorname{Subst}\left (\int \frac{x^4}{\left (a+b x^2\right )^2 \sqrt{c+d x^2}} \, dx,x,x^4\right )\\ &=\frac{a x^4 \sqrt{c+d x^8}}{8 b (b c-a d) \left (a+b x^8\right )}-\frac{\operatorname{Subst}\left (\int \frac{a c-2 (b c-a d) x^2}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx,x,x^4\right )}{8 b (b c-a d)}\\ &=\frac{a x^4 \sqrt{c+d x^8}}{8 b (b c-a d) \left (a+b x^8\right )}+\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{c+d x^2}} \, dx,x,x^4\right )}{4 b^2}-\frac{(a (3 b c-2 a d)) \operatorname{Subst}\left (\int \frac{1}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx,x,x^4\right )}{8 b^2 (b c-a d)}\\ &=\frac{a x^4 \sqrt{c+d x^8}}{8 b (b c-a d) \left (a+b x^8\right )}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-d x^2} \, dx,x,\frac{x^4}{\sqrt{c+d x^8}}\right )}{4 b^2}-\frac{(a (3 b c-2 a d)) \operatorname{Subst}\left (\int \frac{1}{a-(-b c+a d) x^2} \, dx,x,\frac{x^4}{\sqrt{c+d x^8}}\right )}{8 b^2 (b c-a d)}\\ &=\frac{a x^4 \sqrt{c+d x^8}}{8 b (b c-a d) \left (a+b x^8\right )}-\frac{\sqrt{a} (3 b c-2 a d) \tan ^{-1}\left (\frac{\sqrt{b c-a d} x^4}{\sqrt{a} \sqrt{c+d x^8}}\right )}{8 b^2 (b c-a d)^{3/2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{d} x^4}{\sqrt{c+d x^8}}\right )}{4 b^2 \sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 0.210382, size = 135, normalized size = 0.96 \[ \frac{\frac{a b x^4 \sqrt{c+d x^8}}{\left (a+b x^8\right ) (b c-a d)}+\frac{\sqrt{a} (2 a d-3 b c) \tan ^{-1}\left (\frac{x^4 \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^8}}\right )}{(b c-a d)^{3/2}}+\frac{2 \log \left (\sqrt{d} \sqrt{c+d x^8}+d x^4\right )}{\sqrt{d}}}{8 b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^19/((a + b*x^8)^2*Sqrt[c + d*x^8]),x]

[Out]

((a*b*x^4*Sqrt[c + d*x^8])/((b*c - a*d)*(a + b*x^8)) + (Sqrt[a]*(-3*b*c + 2*a*d)*ArcTan[(Sqrt[b*c - a*d]*x^4)/
(Sqrt[a]*Sqrt[c + d*x^8])])/(b*c - a*d)^(3/2) + (2*Log[d*x^4 + Sqrt[d]*Sqrt[c + d*x^8]])/Sqrt[d])/(8*b^2)

________________________________________________________________________________________

Maple [F]  time = 0.046, size = 0, normalized size = 0. \begin{align*} \int{\frac{{x}^{19}}{ \left ( b{x}^{8}+a \right ) ^{2}}{\frac{1}{\sqrt{d{x}^{8}+c}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^19/(b*x^8+a)^2/(d*x^8+c)^(1/2),x)

[Out]

int(x^19/(b*x^8+a)^2/(d*x^8+c)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{19}}{{\left (b x^{8} + a\right )}^{2} \sqrt{d x^{8} + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^19/(b*x^8+a)^2/(d*x^8+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^19/((b*x^8 + a)^2*sqrt(d*x^8 + c)), x)

________________________________________________________________________________________

Fricas [A]  time = 3.75799, size = 2284, normalized size = 16.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^19/(b*x^8+a)^2/(d*x^8+c)^(1/2),x, algorithm="fricas")

[Out]

[1/32*(4*sqrt(d*x^8 + c)*a*b*d*x^4 + 4*((b^2*c - a*b*d)*x^8 + a*b*c - a^2*d)*sqrt(d)*log(-2*d*x^8 - 2*sqrt(d*x
^8 + c)*sqrt(d)*x^4 - c) + ((3*b^2*c*d - 2*a*b*d^2)*x^8 + 3*a*b*c*d - 2*a^2*d^2)*sqrt(-a/(b*c - a*d))*log(((b^
2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^16 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^8 + a^2*c^2 - 4*((b^2*c^2 - 3*a*b*c*d + 2*a^
2*d^2)*x^12 - (a*b*c^2 - a^2*c*d)*x^4)*sqrt(d*x^8 + c)*sqrt(-a/(b*c - a*d)))/(b^2*x^16 + 2*a*b*x^8 + a^2)))/((
b^4*c*d - a*b^3*d^2)*x^8 + a*b^3*c*d - a^2*b^2*d^2), 1/32*(4*sqrt(d*x^8 + c)*a*b*d*x^4 - 8*((b^2*c - a*b*d)*x^
8 + a*b*c - a^2*d)*sqrt(-d)*arctan(sqrt(-d)*x^4/sqrt(d*x^8 + c)) + ((3*b^2*c*d - 2*a*b*d^2)*x^8 + 3*a*b*c*d -
2*a^2*d^2)*sqrt(-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^16 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^8 +
a^2*c^2 - 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^12 - (a*b*c^2 - a^2*c*d)*x^4)*sqrt(d*x^8 + c)*sqrt(-a/(b*c -
a*d)))/(b^2*x^16 + 2*a*b*x^8 + a^2)))/((b^4*c*d - a*b^3*d^2)*x^8 + a*b^3*c*d - a^2*b^2*d^2), 1/16*(2*sqrt(d*x^
8 + c)*a*b*d*x^4 + ((3*b^2*c*d - 2*a*b*d^2)*x^8 + 3*a*b*c*d - 2*a^2*d^2)*sqrt(a/(b*c - a*d))*arctan(-1/2*((b*c
 - 2*a*d)*x^8 - a*c)*sqrt(d*x^8 + c)*sqrt(a/(b*c - a*d))/(a*d*x^12 + a*c*x^4)) + 2*((b^2*c - a*b*d)*x^8 + a*b*
c - a^2*d)*sqrt(d)*log(-2*d*x^8 - 2*sqrt(d*x^8 + c)*sqrt(d)*x^4 - c))/((b^4*c*d - a*b^3*d^2)*x^8 + a*b^3*c*d -
 a^2*b^2*d^2), 1/16*(2*sqrt(d*x^8 + c)*a*b*d*x^4 - 4*((b^2*c - a*b*d)*x^8 + a*b*c - a^2*d)*sqrt(-d)*arctan(sqr
t(-d)*x^4/sqrt(d*x^8 + c)) + ((3*b^2*c*d - 2*a*b*d^2)*x^8 + 3*a*b*c*d - 2*a^2*d^2)*sqrt(a/(b*c - a*d))*arctan(
-1/2*((b*c - 2*a*d)*x^8 - a*c)*sqrt(d*x^8 + c)*sqrt(a/(b*c - a*d))/(a*d*x^12 + a*c*x^4)))/((b^4*c*d - a*b^3*d^
2)*x^8 + a*b^3*c*d - a^2*b^2*d^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**19/(b*x**8+a)**2/(d*x**8+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.74024, size = 205, normalized size = 1.45 \begin{align*} \frac{1}{8} \, c^{2}{\left (\frac{{\left (3 \, a b c - 2 \, a^{2} d\right )} \arctan \left (\frac{a \sqrt{d + \frac{c}{x^{8}}}}{\sqrt{a b c - a^{2} d}}\right )}{{\left (b^{3} c^{3} - a b^{2} c^{2} d\right )} \sqrt{a b c - a^{2} d}} + \frac{a \sqrt{d + \frac{c}{x^{8}}}}{{\left (b^{2} c^{2} - a b c d\right )}{\left (b c + a{\left (d + \frac{c}{x^{8}}\right )} - a d\right )}} - \frac{2 \, \arctan \left (\frac{\sqrt{d + \frac{c}{x^{8}}}}{\sqrt{-d}}\right )}{b^{2} c^{2} \sqrt{-d}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^19/(b*x^8+a)^2/(d*x^8+c)^(1/2),x, algorithm="giac")

[Out]

1/8*c^2*((3*a*b*c - 2*a^2*d)*arctan(a*sqrt(d + c/x^8)/sqrt(a*b*c - a^2*d))/((b^3*c^3 - a*b^2*c^2*d)*sqrt(a*b*c
 - a^2*d)) + a*sqrt(d + c/x^8)/((b^2*c^2 - a*b*c*d)*(b*c + a*(d + c/x^8) - a*d)) - 2*arctan(sqrt(d + c/x^8)/sq
rt(-d))/(b^2*c^2*sqrt(-d)))